Steady-State Metabolite Concentrations Reflect a Balance between Maximizing Enzyme Efficiency and Minimizing Total Metabolite Load
نویسندگان
چکیده
Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity) and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW), which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.
منابع مشابه
Secondary Metabolite Contents and Antioxidant Enzyme Activities of Cichorium intybus Hairy Roots in Response to Zinc
Hairy root systems are formed by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes. In most plants such as Cichorium intybus L., hairy root cultures have proven to be an efficient system for secondary metabolites production. The effect of Zinc (ZnSO4), a heavy metal, was investigated at different concentrations (0, 1, 5 and 10 mM) on some secondary metaboli...
متن کاملDoes metabolite channeling accelerate enzyme-catalyzed cascade reactions?
Metabolite or substrate channeling is a direct transfer of metabolites from one enzyme to the next enzyme in a cascade. Among many potential advantages of substrate channeling, acceleration of the total reaction rate is considered as one of the most important and self-evident. However, using a simple model, supported by stochastic simulations, we show that it is not always the case; particularl...
متن کاملGlobal metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome.
Metabolic enzymes control cellular metabolite concentrations dynamically in response to changing environmental and intracellular conditions. Such real-time feedback regulation suggests the global metabolome may sample distinct dynamic steady states, forming "basins of stability" in the energy landscape of possible metabolite concentrations and enzymatic activities. Using metabolite, protein and...
متن کاملMathematical modeling of plant metabolic pathways.
The understanding of the control of metabolic flux in plants requires integrated mathematical formulations of gene and protein expression, enzyme kinetics, and developmental biology. Plants have a large number of metabolically active compartments, and non-steady-state conditions are frequently encountered. Consequently steady-state metabolic flux balance and isotopic flux balance modeling appro...
متن کاملOxygen consumption and metabolite concentrations during transitions between different work intensities in heart.
Steady-state metabolite (ADP, ATP, P(i), PCr, and NADH) concentrations usually differ little between different workloads with significantly different oxygen consumption rates in the heart. However, during transitions between steady states, metabolite concentrations may in some cases change transiently, exhibiting a significant overshoot or undershoot, whereas in other cases they approach near-e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013